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We report and demonstrate experimentally an approach to retrieving the phase of a general complex-valued
wave field from a single diffraction pattern. The approach employs a modulator in its data acquisition, which
greatly reduces the dynamic range requirement of the detector and also greatly facilitates the inverse calcula-
tion. The new algorithm, involving a nonlinear modulus constraint, is free from ambiguities and robust to
noise; it converges rapidly even with a rather loose support constraint. This approach provides a practical
solution to coherent imaging with a broad range of radiations and at all wavelengths.
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Coherent diffraction imaging �CDI� has emerged as a
promising technique for providing structural information of
materials at nanometre length scales and femtosecond time
scales.1–5 A key issue in CDI is the retrieval of the phase
information of the diffracted wave from its intensity
measurement.6,7 Conventional algorithms are mostly plagued
with inherent ambiguities and are confined to isolated speci-
mens. For objects that have soft edges or a large phase vari-
ance, their convergence is relatively slow and may even run
into stagnation.8,9 In some particular situations, the conver-
gence could be improved by applying additional constraints
in the real space. It has also been shown that using curved
illumination with a known curvature is advantageous for
the reconstruction.10 However, reconstructing a general
complex-valued object reliably and rapidly from a single dif-
fraction pattern is far from being routine.

Another big drawback with current CDI techniques is the
extremely high dynamic range requirement for detectors. A
beam stop is usually required to block the direct beam, re-
sulting in the “missing data” problem that further increases
the difficulty in inverting the data.11 By combining data re-
corded with different exposure times, it is possible to build a
diffraction pattern of high dynamic range; but this requires a
stable setup and will considerably increase the total experi-
mental time and the sample damage.

Here we propose an approach that is free from the above
drawbacks. The method converges rapidly to the solution for
general complex-valued objects and has a less stringent
dynamic range requirement on detectors.

Figure 1 shows the experimental setup. Three planes are
defined in this configuration: the modulator, the detector, and
a plane called the “entrance plane” in which the wave front is
known to have a finite extent. The modulator has a known
transmission function that is designed, in one respect, to dif-
fract the incident wave into a large solid angle, yielding a
flattened diffraction intensity pattern. Consequently, the dy-
namic range requirement of the detector is reduced.

The phase recovery process starts with an initial random
guess of the entrance wave �0 and proceeds as follows:

�1� Apply the support constraint,

�n+1 = �n�S + ���n� − �n��1 − S� , �1�

where �n and �n� are the current and the updated estimates of
the entrance wave in the nth �n=0,1 ,2 , . . .� iteration; S de-

notes the support area where the entrance wave is assumed to
have significant values. The parameter � alters the strength
of feedback and takes values in the range of �0.4, 0.9�.

�2� Propagate �n+1 to the modulator plane. �3� Modulate
with the function of the modulator. �4� Propagate the wave
field to the detector plane, yielding �n+1

D =An+1 exp�i�n+1�,
where An+1 and �n+1 denote the amplitude and the phase of
the diffracted wave, respectively.

�5� Apply the magnitude constraint,

�n+1�D = I� exp�i�n+1� , �2�

where I is the recorded diffraction intensity and a new pa-
rameter � is introduced. We have found that a large value of
� leads to a much more rapid convergence. Here we first run
n1 iterations with a large value of � in the range of �0.5, 2�
and then finish with �=0.5.

�6� Backpropagate the wave to the modulator plane. �7�
Remove the effect of the modulator. �8� Backpropagate to the
entrance plane, yielding an updated estimate of the entrance
wave �n+1� .

The steps 1–8 are iterated until the improvement between
sequential estimates of the entrance wave becomes suffi-
ciently small. The update formula of Eq. �1� is similar to that
in the HIO algorithm6 but takes a different form. The new
form is selected to comply with the introduction of the pa-
rameter �. In step 5, the parameter � is changed stepwise. In
fact we have found that gradually reducing � to the value 0.5
as the iteration proceeds gives a better overall rate of con-
vergence. The advantageous effect of using a nonlinear
modulus constraint has already been observed in Ref. 12.
This should not be surprising in view of the nonlinear nature
of the phase retrieval problem itself. Detailed investigation
of this will be the subject of further work. For the results
shown below, the parameter � and the starting value of � are
set to 0.6 and 1.6, respectively.

The use of a modulator and the corresponding wave
propagation between the entrance plane and the modulator
are essential when comparing the approach with other CDI
schemes. As mentioned above, conventional CDI techniques
are accompanied with inherent ambiguities like the transla-
tion and the Hermite conjugation. The competition among
the correct and these ambiguous solutions accounts for their
slow convergence and possible stagnation.9 In the proposed

PHYSICAL REVIEW B 82, 121104�R� �2010�

RAPID COMMUNICATIONS

1098-0121/2010/82�12�/121104�4� ©2010 The American Physical Society121104-1

http://dx.doi.org/10.1103/PhysRevB.82.121104


method, these ambiguous components still occur at the plane
just behind the modulator. However, after applying the divi-
sion operation in step 7, their relationships with the correct
component break down; when they are propagated to the
entrance plane, most of their energy falls outside the support
region. Therefore the effectiveness of the support constraint
is substantially increased in refining the estimate of the
entrance wave.

The performance of the method was first investigated us-
ing simulated intensity data generated for various object
waves. As an example, we show results of retrieving the exit
wave of an extended object illuminated by a curved beam.
Figure 2�a� shows the magnitude transmission of object,
scaled to �0, 1�. The object phase had the same spatial dis-
tribution as the magnitude but rotated by 90° clockwise and
scaled to �0,8��. Figure 2�b� shows the probe amplitude at
the object. Conventional CDI methods would face grave dif-
ficulties when dealing with this situation because of the soft
probe and the large range of phase variations.

Unlike lens-based imaging techniques where the lenses
must be of a particular form in order to provide a good im-
age, there is great flexibility in the design of the modulator. A
number of different modulator designs have been success-
fully tested, including phase gratings, and aberrated lenses.
Here, we show results for a phase plate consisting an array of
pixels that randomly take values of either 0 or � with the
same probability.

Let us assume that the detector has N�N pixels, each of

which are square and �xD across; according to the Fresnel
propagation algorithm, the sampling intervals at the modula-
tor �xM and at the entrance plane �x are

�xM = �d2/N�xD, �3�

�x = �d1/N�xM = �d1/d2��xD, �4�

where � is the wavelength of the radiation employed; d1 and
d2 the distances between the three planes �see Fig. 1�. For the
far-field recording geometry as in the experiments with x
rays and electrons, the Fresnel propagator reduces to the
Fourier propagator, and Eqs. �3� and �4� still hold. A diffrac-
tion pattern was calculated with the following parameters:
�=635 nm; d1=9.7 mm; d2=47.7 mm; N=256; and �xD
=7.4 	m in agreement with the experimental conditions. It
was then quantized to 212 levels to simulate the finite
dynamic range of a detector.

The convergence of the algorithm is monitored using the
signal-to-error ratio �SER� defined as

SER = � ��test�2 
� ���n� − ��test��2, �5�

where �test is the known test entrance wave. Compared to the
normalized rms error metric commonly used in the literature,
the SER is adapted to account for the introduction of the
parameter � and is able to represent the convergence behav-
ior of the algorithm more effectively.

In practice, it may be difficult to locate the true boundary
of the entrance wave. A factor accounting for the degree of
looseness of the support constraint is introduced,

� = �D/B�2, �6�

where B and D are the linear dimensions of the entrance
wave extent and the support as depicted in Fig. 2�b�.

Figure 3 shows the convergence curves for three � val-
ues. One can see the algorithm converges rapidly even with
considerable uncertainty in the a priori knowledge of sup-
port. In the case of �=1.4, we had B=116 and D=138; the
support was 11 pixels broader than the real boundary of the
entrance wave on all sides. Note that the smallest square

FIG. 1. �Color online� Schematic of the experimental setup; the
smiley symbol shows the possible object positions; the wave at the
entrance plane is known to have a finite extent.

FIG. 2. �Color online� Test object and illumination probe �a�
map for the object magnitude transmission scaled to �0, 1� and the
phase retardance, rotated, and scaled to �0,8��; and �b� illumina-
tion probe amplitude with a soft boundary, wherein B, D, and L are
the side length of object, support constraint, and field of view.
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FIG. 3. �Color online� Convergence dependence on the support
looseness � defined as the area ratio of the support and the object
extent.
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surrounding the entrance wave was used for specifying its
extent. If the actual extent were used, the value of � would
be even larger. We also found that applying the support con-
straint at a plane where the wave front is mostly localized in
space gave better convergence and image quality even if the
size of support constraint �in pixels� remains the same.

In principle, the approach is applicable to a broad range of
radiations and wavelengths, such as high-energy electrons
and x-ray photons. Here, we experimentally demonstrate it
using a diode laser with a wavelength of �=635 nm. A lens
�f =50 mm� was used to form a convergent illumination. A
phase plate made of silica glass was placed about 18.5 mm
behind the illumination focus. The plate consisted of 1100
�1100 square pixels with a size of 16 	m, which deliver 0
or � phase shift for the employed wavelength.13 A 14-bits
charge-coupled-device camera consisting of square pixels of
size 7.4 	m was placed 70 mm further downstream from the
plate. The test sample, a microscopic monocotyledon speci-
men, was situated about 1.5 mm before the illumination fo-
cus. Figure 4�a� shows a part of the entire recorded diffrac-
tion pattern, of which the central 376�376 samples were cut
out and used in the reconstruction. The number 376 was
calculated according to Eq. �3�. Figures 4�c� and 4�d� show
the reconstructed amplitude and phase images of the sample
exit wave after 50 iterations. The illumination wave on
sample was reconstructed in the same way from a diffraction

pattern recorded without the sample. Subtraction of the illu-
mination phase from the phase of the sample exit wave
yields the sample phase as shown in the inset in �d�. The
residual phase that one could see is due to the 1-mm-thick
sample plate that altered the actual probe on the sample. A
very loose support was used in the reconstruction. The
dashed square in Fig. 4�b� indicates the size of support con-
straint applied at the illumination focus plane. No support
refinement algorithm was used here, such as the shrink-wrap
algorithm.14 Adoption of such algorithms may lead to even
more rapid convergence.

The function of the modulator and the geometric setup
parameters are the only a priori information required in the
technique. In our experiment, the phase plate was character-
ized by Ptychography15 using the ePIE algorithm.16 There-
fore, there is no stringent accuracy requirement on the modu-
lator fabrication. In practice, a large feature size of the
modulator is desirable in order to facilitate easy manufacture.
If the coherence performance of the radiation source is not a
limitation, the plate feature size can be freely selected by
changing the distance d1 and d2. In fact, the feature size of
plate can be selected to be much larger than �xM. We have
tested binning the modulator pixels. The same amplitude and
phase maps as in Fig. 2�a� but resized to one third of the
whole view �B /L=1 /3�, were used as test entrance wave.
For a modulator pixel size of 4� and 6� of �xM, the re-
quired number of iterations to get an SER value of 100 for
�=1 was 44 and 223, respectively. For a weakly diffractive
object illuminated by a curved beam, it is possible to use an
even bigger modulator pixel size. Consider a possible experi-
ment using 8 keV x rays, with a desired resolution �x
=10 nm, and with d2=8 m, N=1024, �xD=24 	m then ac-
cording to Eqs. �3� and �4�, the distance d1 is calculated to be
0.6 mm and �xM to be 50 nm. In view of the binning calcu-
lation above, modulator with a feature size of about 300 nm,
easily achievable with current fabrication techniques, can be
used in this technique.

In conclusion, we have proposed a general approach to
the phase measurement of a complex-valued wave field. The
approach resolves many of the outstanding problems with
current CDI methods: the extremely high dynamic range re-
quirement of detectors and the stringent requirement on
samples for which a reconstruction can be reliably obtained.
The new algorithm has shown rapid convergence with real
data recorded with a normal detector and using a rather loose
support constraint. This approach provides a robust solution
to the “phase problem” in all disciplines; in particular, it
would allow for routine coherent imaging for biological and
material science.

The work was supported by EPSRC, Basic Technology
Grant �Grant No. EP/E034055/1�, Ultimate Microscopy. The
phase plate was manufactured at the Institute for Applied
Optics, University of Stuttgart, Germany.

FIG. 4. �Color online� Reconstruction of a monocotyledon
sample; �a� recorded diffraction pattern, inset is a closeup view; �b�
amplitude at the plane where the support constraint was applied �in
reversed gray color map�; the dashed square shows the boundary of
support constraint; �c� amplitude; and �d� phase of the sample exit
wave, inset shows the phase retardance due to the sample.
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